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Abstract—Structured peer-to-peer overlays support
compelling applications such as large-scale file systems and
distributed backup using the distributed hash table (DHT)
interface. While unstructured file-sharing systems continue
to flourish, wide adoption of structured applications has
been elusive. We explore an alternative path to deployment
of these applications by asking the question, can structured
applications be run on top of unstructured overlays? We
build an unstructured distributed hash table (UDHT) on
top of state of the art search and topology management
mechanisms, and evaluate whether it can sufficiently emu-
late properties of DHTs to support structured applications.

I. INTRODUCTION

Research on structured peer-to-peer overlay net-
works [21], [20], [18] has produced a number of com-
pelling large-scale distributed applications, everything
from Internet-scale storage [17], distributed backup [4]
to application-level multicast [2] and cooperative web
caching [13]. Despite their obvious advantages, these
applications have seen relatively limited deployment in
the wild, with the only exceptions being file-sharing
networks [7] and infrastructure-based services such as
Coral [8].

The exact cause for the limited deployment of struc-
tured overlay applications is unclear. Some believe
that currently proposed applications are too resource-
intensive for the typical home user. Others argue that
structured overlays are too complex, incur too much
control overhead, or are not robust against node churn.
These arguments have been disputed by both recent liter-
ature [1], [16] and by the successful deployment of DHT-
based file-sharing networks such as E-donkey [7]. Fi-
nally, since most mechanisms on structured overlays rely
on probabilistic algorithms, e.g. data placement/location
and load-balancing, many believe that at scales below
a critical threshold, e.g. thousands of users, structured
applications may deviate from expected performance,
exhibiting imbalance in load distribution and incom-
plete and inconsistent routing table entries. Similarly,
their advantages of reduced per-node routing state (log-
arithmic to size of network) only become evident at

large scales. This provides an “inverse scaling” problem,
where smaller structured overlay networks exhibit poten-
tially undesirable properties, thus impeding the growth
of structured applications to larger user populations.

In this paper, we attempt to circumvent these chal-
lenges through an alternative deployment path for struc-
tured overlay applications. As a start, we explore the fea-
sibility of efficiently implementing the basic features of a
DHT on unstructured overlays and thus deploying DHT-
based structured overlay applications on an Unstructured
Distributed Hash Table (UDHT). Supporting structured
applications on unstructured overlays means we could
avoid pitfalls such as the inverse scaling problem and
leverage deployed file-sharing networks to bootstrap a
large-scale structured network. In addition, our UDHT
would support flexible searches provided by file-sharing
systems along with location of rare objects like DHTs.
Unlike hybrid networks [14], a UDHT supports both
unstructured and structured overlay functionality in a
single network.

The key contributions of this paper are: One, we
leverage state-of-the-art algorithms in data location, data
replication, and topology management from unstructured
P2P networks, and synthesize the core data placement
and data location algorithms of UDHT. Two, we propose
support mechanisms for data maintenance and replica-
tion, providing a fully functional implementation of the
DHT interface commonly used by structured P2P appli-
cations (Section III). Three, we measure the effectiveness
of UDHT, through detailed simulation, to locate any
randomly chosen file and thus provide the deterministic
data storage and retrieval functionality required by struc-
tured applications (Section IV). Though we sacrifice the
guaranteed lookup properties provided by the DHTs, our
evaluation shows promising results to motivate further
investigation in this direction. Four, we identify the
main hurdles in making our UDHT approach practical
to support large-scale structured applications and present
(Section V) a discussion of further optimizations to
improve UDHT.
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Fig. 1. Distributed Hash Table. Node 2113 stores data into the
DHT using a put operation with key 3222. Node 1023 retrieves the
data using get of key 3222.

II. BACKGROUND AND RELATED WORK

Before discussing our system design, we introduce the
basic concepts behind structured peer-to-peer overlays
and highlight several key pieces of related work.
Structured Overlays and DHTs. A structured peer-
to-peer overlay is an application-level network con-
necting any number of nodes, each representing an
instance of an overlay participant. Nodes are assigned
nodeIds uniformly at random from a large identifier
space. Application-specific objects are assigned unique
identifiers called keys from the same space.

The overlay dynamically maps each key to a unique
live node, called its root node. While a key’s root can
change with network membership, at any given time
in a consistent network, a single node is responsible
for each key. The root is usually defined as the peer
with nodeId closest to the key. At their lowest layer,
structured overlays provide key-based routing (KBR) [6],
delivering messages based on a destination key to the
key’s root node using multihop routing, where a node
at each hop forwards the message using a local routing
table of overlay links.

While KBR provides the foundation for structured
overlays, the most commonly used interface by struc-
tured applications is the DHT interface [5], [6]. A DHT
provides reliable storage by storing each data block or
file based on a specific “key.” It provides two simple
functions, put (Key K, Data D) reliably stores the data
accordingly to key K, and get (Key K) retrieves the data
stored associated with key K. Finally, a DHT maintains
high availability of its data across changes in network
membership. Figure 1 shows a DHT operation, where
node 1023 retrieves data stored by node 2113.
Related Work. A number of previous overlay net-
work studies have strongly influenced our work. First,
two studies by Gkantsidis et al. [10], [11] analyzed
the performance of random walk search algorithms on
overlay networks, and showed them to be highly effective
when coupled with one-hop replication. Lv et al. evalu-

ated different search algorithms on unstructured overlays,
and showed that k-random walks perform significantly
better than flooding or expanding ring searches [15].
Gia [3] exploits the heterogeneous capacity across peers
for topology adaptation, resulting in the natural selection
of high capacity nodes as network hubs, greatly increas-
ing the effectiveness of biased random walk searches.
Our work leverages Gia’s capacity-based connectivity
model. Recent work showed that structured overlays
are capable of supporting complex queries using similar
adaptivity and robustness optimizations as their unstruc-
tured counterparts [1]. In comparison, our work asks
the opposite question: can unstructured overlays provide
structured overlay interfaces such as a DHT.

Finally, our experiments leverage datasets from several
peer-to-peer measurement studies1. We use the original
Gnutella study [19] to derive a Gnutella network topol-
ogy, as well as a trace for node churn. We also follow the
Gia [3] and Myths [1] work in deriving a heterogeneity
capacity model from the Gnutella data. From recent
measurement studies on the E-Donkey network [7], we
derive a model for file distribution. Finally, we also
utilize the node churn trace from the recent Cornell study
on the Skype network [12].

III. SEARCHING IN UNSTRUCTURED DHTS

Despite recent studies that have dispelled some of the
criticisms of structured overlays, the limited deployment
of structured applications remains unexplained. Whether
the challenges are based on complexity, inverse scaling,
or unknown issues with structured overlays, one potential
solution is to decouple structured overlay applications
from structured overlays and leverage existing deploy-
ments of unstructured networks. Using this approach, we
build and deploy an Unstructured Distributed Hash Table
(UDHT) that provides the same interface as a traditional
DHT. We can bootstrap structured applications on a
smaller unstructured network running a UDHT, then
gradually migrate to structured network at larger scales.
The focus of this paper, is to evaluate the feasibility of
building a UDHT to support structured overlay applica-
tions at smaller scales. Issues of migration to structured
overlays remain future work.

While unstructured overlays have successfully sup-
ported queries on file-sharing networks, they are opti-
mized for locating popular files with a high number of
replicas in the network. The success of our approach
relies on the ability of unstructured overlays to efficiently

1We gratefully acknowledge our appreciation to the authors of
these studies for access to their measurement data



locate all files, including those with a low replication
factor. We begin by explaining our choice of search algo-
rithms and topologies, then describe our implementation
of an unstructured DHT network.

A. Search and Topology Management

Search. Previous work [3], [10], [11], [15] has studied
a number of search algorithms in unstructured overlays,
including TTL-based flooding, expanding ring searches,
and k-random walks. In TTL-based flooding, a node
floods a query to all of its neighbors, decrementing the
TTL count with each hop. Queries are dropped when
TTL reaches zero. Expanding ring searches extend TTL-
based flooding by repeatedly querying with increasing
TTL values until the object is found. Finally, a random
walk query randomly traverses the network graph until it
finds the object or a maximum hop count is reached. A
k-random walk issues k random walk queries in parallel.

Several studies [3], [15] show that k-random walks
significantly outperform flooding-based approaches. We
evaluate different variants of random walk algorithms for
our system. However, where Gia’s biased random walk
requires per-query state at each node to avoid redundant
paths, we introduce an embedded n-window random
walk, where the last n nodes visited are embedded inside
each query. A query avoids any neighbors already present
in its n hop window, thus avoiding any routing loops of
n hops or less. If the query reaches a “dead-end” where
all neighbors are in the n-hop window, it chooses the
neighbor least recently traversed.

Topology Management. To improve search perfor-
mance, we require the unstructured overlay to exploit
heterogeneous node capacity using the same technique
described in Gia [3] and Myths [1]. A node’s maximum
connectivity is roughly proportional to its “capacity,”
which is modeled using its bandwidth capacity. Asso-
ciating degree with node capacity produces networks
with heterogeneous per-node connectivity, where a large
number of less connected “edge” nodes are connected
by a number of highly connected “hubs.” Since a node’s
chance of being visited by a query is proportional to its
in-degree, random walk queries are more likely to visit
hub nodes than edge nodes.

One-hop Index Replication. Finally, we adopt the
one-hop index replication optimization introduced by
Gia [3], where each node maintains an index of ob-
jects stored by its one-hop neighbors. Combined with
the capacity-based connectivity model, this significantly
improves search effectiveness by caching indices of edge
nodes on hubs often visited by random walks. This

emulates multi-layer superpeer search, and explains how
Gia outperforms a two-layer superpeer network.

B. Implementing a UDHT

Supporting Put and Get. A DHT supports two
basic operations: PUT stores a data object based on an
identifying key K, and GET retrieves the data object
associated with K. To support additional DHT semantics
such as authentication, data removal, and user quotas,
objects stored using the same key must be co-located on
the same set of peers.

The UDHT maintains n replicas of each object for
increased availability, where replication factor n is a
system-wide parameter determined at startup time. Un-
like a DHT, K’s replicas can be on any n peers, and is
independent of K.

To perform a GET operation on K, a client initiates
a k-random walk search for key K. The random walks
continue until each has successfully located the desired
object, or has reached its MAXCOUNT number of hops.
To perform a PUT on K, a client first searches for any
existing objects stored with key K by performing a GET
on K. If such objects exist, it is highly likely the search
will locate at least one peer P storing a replica. If no
replica is found, the client issues k parallel random walks
to choose a set of n nodes to store the replicas of K.
At each new node, a random walk terminates or adds
the node to the set with probability 1/m, where m is an
approximate estimate of the network diameter. Once n
peers are found, the client disseminates the object to all
peers in the set.

Data Replication and Proactive Maintenance. We
assume that once a new node connects to the UDHT,
it maintains connections to its overlay neighbors until it
leaves the UDHT. Each peer sends periodic heartbeats to
its one-hop neighbors. When a peer notices a neighbor
X has disconnected, it reads its own list for objects
stored on X (from one-hop index replication), performs
a random walk search for each object and makes another
copy of the object on itself.

IV. EXPERIMENTAL EVALUATION

In this section, we perform detailed evaluation of
our mechanisms and algorithms using a customized
simulator based on PlanetSim [9], a Java-based event
simulator for overlays. For realistic results, we leverage
a variety of data from previous measurement studies [3],
[7], [12], [19], including overlay topology, node capacity,
and overlay churn models. Note that we are primarily
concerned about performance at the overlay layer, e.g.
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Fig. 2. Query success rate with one-hop
replication on the Gnutella and Gia topology.
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Fig. 3. Query overhead with one-hop repli-
cation on the Gnutella and Gia topology.
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Fig. 4. Query success rate with UDHT on a
static network.
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Fig. 5. Query overhead with UDHT on a
static network.
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Fig. 6. Bandwidth consumed in a 3K node
UDHT, 1 query (68Bytes) per sec/node.
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Fig. 7. Comparison of query success rate of
3K DHT and UDHT (1-RW, 750 hops depth)
under different churns.
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object placement in UDHT.
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Fig. 10. Comparing query overhead with
varying network sizes for UDHT, 1RW, 5RF.

overlay hops per query, and make no assumptions about
the topology-awareness of the overlay network.

We perform two sets of experiments. First, we evaluate
the ability of existing topology management and search
algorithms to locate “unpopular” objects on two overlay
topologies, Gnutella and Gia. Second, we evaluate the
effectiveness of our UDHT by examining query success
under stable, Gnutella, and Skype churn models.

A. Evaluation Methodology

Overlay Topology. We evaluate our system on two
overlay topologies. First, we take topology data gathered
by the first Gnutella measurement [19], and isolate
its largest connected component (1787 nodes) for our
“Gnutella” topology. Second, we produce a 3000 node
“Gia” topology based on the capacity-based adaptation
parameters from Gia [3]. As in Gia, we assign node ca-
pacities by mapping Gnutella bandwidth measurements
to capacity values, then connect the network until nodes
reach a “satisfied” state.

Overlay Churn Traces. For evaluation under network
dynamics, we use two traces of churn. First, we generate
a list of node lifetime values from application-level
uptime information of 37K Gnutella hosts [19]. For each
new node, we assign a randomly selected lifetime value
from this distribution. Second, we use similar techniques
to model the lifetime values of more than 2100 Skype
superpeers from a recent Cornell study [12]. In both
cases, we keep the network size constant by adding a
new node whenever an existing node leaves the network.
New nodes in the “Gnutella” model are assigned a node
degree from the Gnutella connectivity distribution, and
nodes from the “Gia” model are assigned the same
capacity as the node it replaced. Neighbors of the new
node are chosen randomly while respecting connectivity
or capacity constraints at each node.

Object Replication and Placement. Since our intent
is to study search for “unpopular” objects, each object
in our experiments has a replication factor of 5 unless
otherwise specified. For Figures 2 and 3, we randomly



map each new node into one of 12000 nodes from
a recent study of the e-donkey network [7], thereby
assigning it a selection of object replicas. For UDHT
experiments, each new node brings in 100 new objects
that are then replicated into the system using the PUT
operation. Replica placement also observes each node’s
capacity based on the Gia distribution.

B. Evaluation Results

Our simulations look at several scenarios. First, we
evaluate whether unstructured overlays can support ef-
fective location of “unpopular” objects, where the num-
ber of replicas is low (≤ 5). These results determine
the parameters and algorithms for our UDHT. Second,
we examine the performance of our UDHT under static
and dynamic network conditions. We seek to understand
our search overhead and the impact of increasing object
replication. Third, we look at the control overhead for
inserting objects into the network. Finally, we evaluate
our UDHT performance as the network grows in size.
Queries on Static Overlays. Our preliminary results
confirm previous studies [10], [11], [3] that show random
walks to be the most effective search algorithms on
unstructured overlays. We begin by evaluating the effec-
tiveness of random walk strategies on both the Gnutella
and Gia topologies. We quantify overhead using the
number of overlay hops crossed by all messages.

Figures 2 and 3 show the lookup query success for
different random walk depths and different number of
random walks, for the Gnutella and Gia topologies.
Overall, the capacity-based Gia topology provides sig-
nificantly better query performance with lower overhead
compared to the flat Gnutella topology. The variance in
node degree, combined with one-hop replication allows
random walks to cover a greater portion of the network.
While using parallel random walks, i.e. 1RW to 3RW,
improves query success rate, our experiments confirm
prior work [3] that increasing the replication factor
can more dramatically improve query success rate with
lower overhead. From these results, we conclude that
our UDHT will enable one-hop index replication, use
only 1 random walk for search, and provide object
replication. Where possible, we will utilize a capacity-
based topology to improve query success.
UDHT Under Static Conditions. Figures 4 and 5
evaluate UDHT query success rates and search overheads
on static networks. Figure 6 presents the bandwidth re-
quired by each node if every node maintained a constant
stream of queries at a rate of 1 query/second, with
average query size of 68 Bytes. Our UDHT has one-
hop index replication enabled, and is running on a 3000

node Gia topology. Clearly, increasing the object replica-
tion factor drastically improves query performance and
reduces search overhead. While performing 3-random
walk drastically increases search overhead, its benefit
to queries is limited and easily offset with slightly
higher object replication. In addition, increasing the
random walk depth improves query success with a very
low increase in query cost. Therefore, unless otherwise
specified, we will use 1-random walk with a max hop
count of 750 for our remaining UDHT experiments.

UDHT and DHT Under Network Churn. Figure 7
presents a comparison of the lookup performance of a
3000 node DHT and UDHT network under the Skype
and the Gnutella churn models. We used Chord for
our DHT tests and, for a fair comparison, we used
highly favorable values for the stabilization interval and
the finger table update interval. The UDHT network
was configured to use 1-Random walk with 750 hops
maximum depth. In general, the Skype model exhibits
lower churn rate than the Gnutella model. Each test ran
for approximately 12 hours of virtual time. During each
run, an average of 840 nodes died under the Skype churn
model, while an average of 2600 nodes died under the
Gnutella model.

Our UDHT results show that proactive replica main-
tenance provides excellent object availability, leading
to high query success even under churn. In our repair
scheme, the neighbor of a failed node uses its neighbor
index to search for the failed node’s objects. We see from
the graph that for networks with higher rates of expected
churn, e.g. the Gnutella model, increasing object repli-
cation can dramatically improve data availability. Our
experiments confirm that the overhead of each proactive
recovery request is similar to a normal UDHT lookup
and increases with higher churn, as expected. Under
churn, even DHT lookup performance drops significantly
and is comparable to the performance of a UDHT.
Because of heavy churn, higher replication and proactive
replica maintenance is required in a DHT network also
to sustain high lookup performance. DHT results, again,
show similar trend as the UDHT results with better
lookup performance under Skype churn model than
under Gnutella churn.

These results together indicate that with the right set
of parameters and with proactive replication, its possible
to achieve high data availability, similar data availability
as that of a DHT, in an unstructured network.

Object placement overhead. We compare the relative
costs of performing object placement (PUT), and query
operations in our UDHT. Figure 8 shows that as the



replication factor increases, the cost of placing data
outpaces the cost of locating objects. Objects are easier
to find, but finding random nodes for its replica set with
enough capacity is more costly. However, each node can
maintain a cache of local neighbor nodes by doing a
random walk once and use the cache to speedup the
puts, effectively reducing the object placement overhead
to a one time cost.
Performance in larger networks. Figures 9 and 10
show the effect of increasing the network size on our
UDHT algorithms. As network size increases, a given
random walk slowly becomes less effective at locating
data. To maintain a success rate, we can increase the
random walk depth or the replication factor. Increasing
the random walk depth increases the query overhead,
while a higher replication factor decreases the query
overhead and slows down the decrease in query success
rate. We discuss further mechanisms to improve scala-
bility in Section V.

Overall, our results show that with proactive object
replication and maintenance, our UDHT can support
the DHT interface on unstructured networks. However,
sustaining good performance of UDHT under larger
network sizes is a challenge we need to overcome to
efficiently run structured applications on UDHT.

V. DISCUSSION AND CONCLUSIONS

Scaling UDHT. Figures 9 and 10 bring forth the
need for additional mechanisms to scale UDHT to larger
networks. We plan to investigate further optimizations to
address this issue.

Related works [3], [10], [11] show the significant ef-
fect of 1-hop replication on UDHT lookup. In addition to
index replication with 1-hop local neighbors, each node
can perform 1-hop replication with a set of randomly
selected long-distance neighbors. We conjecture that this
spreading of indices to a larger area of the network
should significantly decrease lookup failures in UDHT
at low random walk depths. In addition to replicating,
searching with k-random walks, with k different long-
distance neighbor as origins, instead of a single origin,
explores different neighborhoods of the network and can
improve the query performance further. Selecting this
set of long-distance neighbors, however, is a challenging
problem that we are looking into.

In summary, we propose an Unstructured Distributed
Hash Table to provide a DHT interface on unstructured
P2P networks. Not only does the UDHT support location
of rare objects through the DHT interface, it does not
rely on structure, and thus also supports complex queries
like unstructured file-sharing systems. Our results show

that our data search and replication mechanisms are very
effective in smaller networks. We are currently exploring
a very promising technique to scale UDHTs to extremely
large networks, and building software “plug-ins” to
enable gradual conversion of file-sharing networks into
legitimate end-user applications.
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