Examining Graph Properties of Unstructured
Peer-to-Peer Overlay Topology

Chao Xie*, Sijie Guof, Reza Rejaiet, and Yi Pan*

*Georgia State University, USA

Abstract—During the past few years, unstructured peer-to-
peer (P2P) file-sharing systems have witnessed a significant
increase in popularity. However, there lacks a systematic study
on graph properties of the overlay topology. In this paper, we use
accurate snapshots of the Gnutella overlay that span over roughly
three years to explore changes in graph properties over long
timescale. We investigate the effect of network address translation
(NAT) on topology analysis. We examine a wide spectrum of
graph properties characterizing the Gnutella top-level overlay
topology and illustrate some interesting results. We find that
the connection limit plays an important role in forming the
unstructured overlay topology.

I. INTRODUCTION

During recent years, unstructured peer-to-peer (P2P) file-
sharing systems have experienced a dramatic increase in
popularity and contributed a significant portion of the total
Internet traffic. Examining graph properties of unstructured
P2P systems is of great importance. First, we can gain detailed
insight into the nature of the underlying system. Moreover,
graph properties can affect performance of network algorithms
and possibly performance of the networks. For the more,
studying graph properties can facilitate generation of accurate
artificial topologies for simulation.

The Gnutella network has been extensively examined during
the past few years because of its wide deployment and huge
user populations. Earlier research [1] [2] has studied charac-
teristics of Gnutella overlay topologies. These previous studies
were conducted more than 4 years ago on much smaller user
populations. Moreover, they used either partial or distorted
snapshots of the Gnutella network and thus the accuracy of
their results was significantly affected [3]. While recent work
[4] [5] studied the accurate snapshots, they conducted only a
limited number of analysis. A complete picture of the Gnutella
overlay strongly requires a systematic study on the graph
properties. Our paper tries to fill this gap by examining the
overlay topology from an array of perspectives.

In this paper, we use three accurate snapshots of the
Gnutella overlay that span over roughly three years to ex-
plore changes in graph properties over long timescale. We
investigate the effect of network address translation (NAT)
on topology analysis. We examine a wide spectrum of graph
properties characterizing the Gnutella top-level overlay topol-
ogy illustrate some interesting results. To our knowledge, our
work is the only study that examines such diverse and com-
prehensive metrics. Our results show that the connection limit
plays an important role in forming the unstructured overlay
topology. Due to the limited space, we limit the explanation
of the implications of our findings and the potential underlying
causes and explore these issues as future work.
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TABLE I
BASIC TOP-LEVEL STATISTICS OF OUR GNUTELLA SNAPSHOTS
Basic Stat. 10/18/04 02/02/05 05/29/06
n (num. of nodes) 122,776 161,668 409,027
m (num. of edges) 1,317,702 1,940,183 5,264,680
(k) (avg. degree) 21.47 24.00 25.74
(c) (node clustering coef.) 0.02197 0.01781 0.01613
(k) (avg. coreness) 12.89 15.20 16.63
(d) (avg. distance) 3.904 4.005 4.263
(g) (avg. eccentricity) 6.932 7.481 6.950
(b) (avg. node betweenness) 301,030 404,542 1,076,450

Our study focuses on the top-level topology of the Gnutella
network. Modern Gnutella network adopted a two-tier overlay
topology, which divides peers into two groups, ultrapeers and
leaf peers, as shown in Figure 1. There also exist some peers
called legacy peers, employing the old version of Gnutella
network. The ultrapeers and legacy peers form the top-level
overlay, while the bottom-level overlay merely comprises
leaf peers. The top-level constitutes the backbone and is the
most influential part of the whole network. Therefore, we
concentrate on the characteristics of the top-level (ultrapeer)
overlay in this paper.

With the Gnutella crawler Cruiser [3], we have captured
more than 20,000 snapshots of the Gnutella network from 2004
to 2006. In this paper, we examine three snapshots, namely
10/18/04, 02/02/05 and 05/29/06, with each snapshot selected
from one different year. Modeling peers by vertices and
connections between peers by edges, we treat these snapshots
as undirected graphs. In this paper, terms peer, ultrapeer,
vertex and node are interchangeable. Table [ presents basic
statistics about the three snapshots.

The rest of this paper is organized as follows. Section 11
investigates the effect of NAT boxes on overlay topology
analysis. In section III, we illustrate the set of graph properties
derived from our snapshots. Finally, Section IV!concludes our
work.

II. EFFECT OF NAT BOXES

Figure 2 plots the node degree distribution of the Gnutella
network, i.e., the Probability Distribution Function (PDF) of
node degree p(k) = n(k)/n, where n(k) is the total number
of k-degree nodes. The node degree distributions for all three
snapshots look similar. The degree distributions have two
distinct segments around a spike in degree of 30, which
coincides with the results of [4]. This is because the top-level
connection limit of common Gnutella client softwares, such
as Limewire and BearShare, is set to be 30 by the software
designers. The nodes with degree lower than the limit are in a
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Fig. 1. Gnutella’s two-tier overlay Fig. 2. Node degree distribution.
topology.

transitive stage, trying to establish more connections and thus
achieve more efficient file-sharing. We say these nodes are in
the flux state.

The Complementary Cumulative Distribution Function
(CCDF) of node degree P(k) = f,:c p(k)dk in Figure 3
exhibits a sharp drop for node degrees larger than 30, which
means that nodes with large connectivity barely exist. When
a node reaches the connection limit, it cannot open more
connections. We say the nodes that achieve the connection
limit are in the saturation state.

In both Figure 2| and Figure 3, we can observe a small
number of nodes with degree larger than the connection limit.
We say these nodes are in the supersaturation state. One may
instinctively presume that these nodes represent the rare users
who had modified their client software and set the top-level
connection limit to higher values.

However, the unusual peak in Figure 2 in degree interval
[40,60] at the decreasing tail seems odd and requires further
explanation. In constructing the snapshot graphs from the
crawled data, we merely use IP address to identify different
nodes. After a carefully inspection on the crawled data, we
find that there exist some response messages from identical IP
address but different port numbers. This exhibits the trademark
of NAT, a technique that enables a local-area network (LAN)
to use one set of IP addresses for internal traffic and a second
set of addresses for external traffic. If several peers hide behind
a NAT device, they may be treated as one node with the NAT
device’s external IP. This special node takes the NAT-level
degree, which is the sum of the degrees of all peers behind
the NAT. With this in mind, we reconstruct the snapshot graphs
using IP address plus port number as the node identifier, in
order to penetrate the NAT and treat each peer behind the NAT
device as an individual node. Figure |4 gives the node degree
distribution of these reconstructed graphs. As we expected, the
peak in the decreasing tail disappears.

We define the size of a NAT box as the number of peers
within the NAT box and analyze the CCDF of NAT box size
in Figure 5. Most NAT boxes (more than 90%) have size less
than 4. These NAT boxes represent typical home users who
own up to 3 computers. There also exist a small number of
comparatively huge NAT boxes with size of several hundreds

— 10/18/04
02/02/05
05/29/06

——10/18/04
02/02/05
------- 05/29/06

10° Jrmmremmnssssssssazanse
-n.lu_\(i

>
£
F p(k)
33 3

< 10°
a
w 10°
[=}
3 10°

10° e e

10° 0] -

10° 10' 10 10° 10° 10' 10° 10°
node degree k node degree k

Fig. 3. CCDF of node degree. Fig. 4. Node degree distribution,

with consideration of NAT.

to several thousands, which represent large organizations with
many users connecting to the Gnutella network through a
single NAT device. We further plot the average NAT-level
degree as a function of the NAT size in Figure 6. The average
NAT-level degree increases with the augment of the NAT box
size. This observation implies that most huge-degree nodes in
Figure 2/ are actually the huge NAT boxes composed of many
peers, while each of these peers maintains only a moderate
number of connections. Note that Figure 4/ reveals there do
exist a few individual peers with huge degree. We speculate
that these peers are Internet hubs powered by super-servers.

Hereto we have constructed two different kinds of snapshot
graphs from the crawled data: one takes NAT into consider-
ation while the other does not. Which kind of graph is more
important? We believe that the latter should deserve more
concerns. On the one hand, because the NATed peers are
resident in a LAN, routing and resource discovering among
them is kind of easy. On the other hand, NATed peers are
protected from the external network and LAN connections
are comparative stable and robust, while the NAT device
is exposed to the wide-area networks and are vulnerable to
attacks. If the NAT device is down by failures, all peers
within the NAT box will be disconnected from the Gnutella
network. Thus it is well-founded to count a NAT box as a
single node and study the NAT-level degree rather than the
degree of individual NATed peers. Therefore, we will focus
on the snapshot graphs without consideration of NAT in the
rest of this paper.

III. GRAPH PROPERTIES OF THE TOP-LEVEL OVERLAY

In this section, we quantitatively analyze the top-level
topology of the Gnutella network in terms of various graph
metrics that have been found important in previous networking
literature, covering both theoretic quantities and statistical
properties. Although these metrics are not complete, they are
sufficiently diverse and comprehensive for understanding and
evaluating network topologies [6] [7] [8] [9].

A. Degree Distribution

The node degree distribution may be the most frequently
used graph property. The observations [10] [11] that the node
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as a function of NAT size.

degree distributions in the World Wide Web (WWW) induced
graph and the AS-level topology of the Internet follow power
laws stimulated further interest in network topology research.
Earlier studies [1] [2] observed that the degree distribution
of the Gnutella network exhibited power law. However, [4]
argued that these earlier observations were incorrect charac-
terizations resulted from measurement error and the degree
distribution of the Gnutella network does not follow a power
law. We confirm the claim as it is shown in Figure 2/ and
Figure 3.

Comparing the plots in Figure 2 at the flux state, we observe
that the degree distributions are decreasing in chronological
order (10/18/04>02/02/05>05/29/06). This result is expected
since there is a transition underway as Internet households
move from narrowband connections to broadband connections
[12]. More and more Internet households are shifting from
slower dial-up service to faster high-speed connection tech-
nologies: DSL and cable modem. With broader bandwidth,
a node can establish connections more efficiently and reach
saturation state more quickly, thus reduce its stay in the flux
state.

Table 1 presents the average degree (k) = >, kp(k).
The average degree increases in chronological order
(21.47<24.00<25.74). This resulted from the above reasons as
well. We could reasonably conjecture that (k) might continue
to increase with the technology advancement for the near
future. We further observe that the growth speed of (k) is
declining. From 10/18/04 to 02/02/05 (4 months) (k) is in-
creased by 2.53 while from 02/02/05 to 05/29/06 (15 months)
it is increased by only 1.74. (k) is up-bounded by the top-level
connection limit and its increase is hampered by the bound. If
the Gnutella software designers increase the connection limit,
a prompt rise in (k) could be expected.

We can find in Figure 3| that only 5% of nodes have degree
higher than 33. This means that only a small amount of
Gnutella users have modified their client software and set the
top-level connection limit to higher values. Moreover, we find
that the 05/29/06 graph has the smallest amount of maximum
node degree and the 10/18/04 graph has the largest amount
maximum node degree. This implies that the size of the large
NAT boxes tends to decrease, which reflects the reconstruction
of network infrastructure.

B. Clustering

A common feature of many complex networks is clustering.
Node clustering is a measure of how well the neighbors of a
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given node are locally interconnected. Node clustering c; is
defined as the ratio between the number of edges /N; among
the neighbors of a node 7 of degree k; and the maximum
number of possible edges k;(k; — 1)/2. The node clustering
coefficient of the whole network (c) is the average of ¢; over all
nodes in the network. Clustering expresses local robustness of
the network. Newman [13] found that virus outbreaks spread
faster in highly clustered networks, although outbreak sizes
are smaller.

We first observe in Table I that the node clustering co-
efficient (c) decreases in chronological order. This is very
interesting and may be a result of better connectivity heuristics.
Therefore, the virus outbreaks, if any, spread slower in the
Gnutella network.

The CCDF plot of node clustering is shown in Figure (7.
The tails of the plots decrease more rapidly in chronological
order, which is another evidence that the neighborhood of a
node becomes less interconnected. Moreover, these tails show
scale-free properties, following a power law distribution with
exponent 1.5.

Figure 8 shows average node clustering of k-degree nodes.
The plots have similar shapes where nodes with lower degrees
have higher node clustering than those with higher degrees. We
speculate that there are local clusters sparsely interconnected
by global backbones. The local clusters are probably formed
by nodes with small connectivity but large node clustering.
The highly connected nodes act as a bridge and connect to
different local clusters. Because these highly connected nodes
connect to nodes in different local clusters which are not
interconnected, they have small node clustering.

Note that the plots in Figure |8| at supersaturation state de-
cline sharply. This results from the connection limit. Although
there are a small number of nodes that modified their client
software, most of their neighbors do not and are bounded by
the top-level connection limit. Therefore, these neighborhoods
are loosely interconnected.

C. Assortativity

The network community has recently begun recognizing
the importance of the correlations between the degrees of
connected nodes. According to the behavior of the degree-
degree correlation, the complex networks can be grouped into
three types, namely assortative, disassortative, and neutral
mixing [14]. A node with large degree in the assortative
(disassortative) network tends to connect to nodes with large



109,k k)

3.5

3.0

25

2.0

@

3

&
10g, ok

10g,ok,

15

1.0

0.5

®

R

S
o

0.0

00 05 10 15 20 25 30 35
logoky

(a) 10/18/04

109,P (K, k)

00 05 1.0 15 20 25 3.0

(b) 02/02/05

10g,,P(K, k)

log, k,

00 05 10 15 20 25 30
log, ok,

(c) 05/29/06

Fig. 9. The contour plot of the logarithm of the joint degree distribution P(k1, k2).

—— 10/18/04 10"
- - --02/02/05
05/29/06

——10/18/04
pe - -=-02/02/05
10?2 R e N 05/29/06

average neighbor degree k |

S
s
o 10° X
s) R
g =
10* —
100 0 1 2 3 105 s 4 3 2 1 0
10 10 10 10 10° 10 100 102 10" 10
node degree k normalized rank r/n
Fig. 10. knn of k-degree nodes. Fig. 11. Rich club connectivity.

(small) degree, while for the network of neutral mixing, there
are no such clear tendencies.

One metric of degree-degree correlation is joint degree dis-
tribution [7]. Joint degree distribution (JDD) is the probability
that a randomly selected edge connects nodes of degree k; and
ko respectively, P(ky,ks) = m(ky, k2)/m, where m(ky, k2)
is the total number of edges between k- and k2-degree nodes.

The degree-degree correlation can also be investigated in
terms of the average degree of the neighbors of k-degree
nodes, k., = Y, k'p(k’|k), where p(k'|k) is the conditional
probability that a k-degree node is connected to a k’-degree
node [15]. For the assortive (disassortative) networks, ki,
increases (decreases) with increasing k, while the neutral
networks, k,, is independent of k.

Disassortative networks are vulnerable to both random
failures and targeted attacks [14]. Other metrics, such as
likelihood [16], radial, and tangential [17], are also directly
related to assortativity. In this paper, we use tangential links
to refer the links connecting nodes of similar degrees and use
radial links to refer the links connecting nodes of different
degrees.

We plot the joint degree distribution in Figure 9. Obviously,
all three graphs are disassortative because they exhibit small
JDD values along the anti-diagonal. All graphs have small
frequency of tangential links interconnecting low-degree nodes
(the bottom-left corner). This finding is intuitively reasonable.
These nodes are either in the flux state, working on opening
more connections, or in the saturation state, restricted by the
connection limit. The most frequent links are either radial
(bottom-right and top-left corners) or high-degree tangential
(the top-right corner) because the connection limit do not apply
to high-degree nodes in the saturation state. Furthermore, we
observe that the area constituted by tangential links intercon-
necting low-degree nodes expands in chronological order. With
more widely adopting of broadband technologies, nodes can
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establish connections more efficiently and reach the connection
limit more quickly. Consequently the boundary of the above
area extends.

Note, however, that there is one exceptional area (the upper-
right area) in Figure |9(a) which exhibits a small frequency of
tangential links. If we look back at Figure 3, we can observe
that, compared with the other two plots, the 10/18/04 plot has
a visible gap between degree 100 and degree 2000. For the
10/18/04 snapshots, there are few nodes in this range, which
certainly leads to the sparsity of links in the above area.

Figure |10 plots the average nearest neighbor connectivity
knn as a function of node degree k. If we focus on the nodes
in the flux state and the saturation state, we observe that
these three graphs are getting less assortative in chronological
order and the 05/29/06 graph is almost neutral. Therefore, the
Gnutella network may become less resilient to random failures
and targeted attacks.

D. Rich Club Connectivity

Rich club connectivity reveals information about how tightly
the high-degree nodes are interconnected to each other. Many
networks contain a small number of high-degree nodes, which
are called “rich” nodes. The set of these nodes are called the
rich club [18]. Let node rank r denote the position of a node
in a list sorted by decreasing degree. The rich club is defined
as the set of the first 7 nodes in the ranked list. The rich club
connectivity (RCC) ¢(r/n) is the ratio of the number of links
interconnecting the club numbers over the maximum possible
number of links r(r —1)/2, where r/n is the rank normalized
by the total number of nodes in the network.

Figure [11/ shows RCC as a function of the normalized
node rank. It is interesting that highest ranks do not result
in largest RCCs. This observation implies that a few top
ranked nodes, which have exceptional high degrees, do not
tightly interconnect with one another. Due to the lack of global
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information of the whole Gnutella network, these nodes are not
acquainted with each other and thus not interconnected. RCC
increases with the growth of rank r and approaches a peak.
In this stage, the addition of more club members enriches the
interconnections in the club. These new club members play a
pivotal role in keeping the whole network connected. After the
peak, RCC declines with the growth of rank 7. In this stage,
those lately enrolled club members fail to bring significant
amount of interconnections and the denominator r(r — 1)/2
tends to dominate the RCC value.

E. Coreness

The k-core of a graph is the subgraph obtained by recur-
sively removing all nodes of degree less than k& from the
original graph [19]. If a node belongs to the k-core but not
to the (k + 1)-core, we say that the node coreness rk of
this node is k. Nodes with degree 1 have x = 0. The node
coreness contains information about how “deep” in the core
the node is. It is related to the degree of nodes but is a more
sophisticated measure than the node degree. A node with small
coreness is not well connected and can be disconnected easily
by removing its poorly connected neighbors, even if its degree
is high.

Figure 12/ plots the CCDF of node coreness. It shows
that more than 70% of nodes have coreness larger than 13.
Most nodes in the Gnutella network tend to dive deeply into
the network core and thus are well connected. This implies
that the Gnutella network successfully attain a well-connected
structure by itself. In Table [I, the average coreness increases
in chronological order, which is the inevitable result of the
growth of average degree (k).

Figure (13| plots the average node coreness of k-degree
nodes. In the flux state, the node coreness increases with the
growth of node degree. In this stage, a node pushes into the
core while it opens more connections. Interestingly, when the
node reaches the saturation state, its coreness seems saturated
as well. For nodes that successfully attain the supersaturation
state, increasing node degree does not increase coreness. We
claim that the coreness is also confined by the connection limit
potentially.

F. Distance

The distance distribution or the shortest path length distribu-
tion d(z) is the probability that a random pair of nodes are at a
distance of x hops from each other, i.e., the number of pairs of
nodes at a distance x divided by the total number of pairs n? of

1
0 o
— 10/18/04
02/02/05 g

eueees 05/29/06 a
o7

——10/18/04
02/02/05
=eeeees 05/29/06

average eccentricity

0.0} 3 ; ; s
0123 456 7 8 910 10 10 10 10
eccentricity & node degree k

Fig. 16. Eccentricity distribution. Fig. 17. Average eccentricity from

k-degree nodes.

the graph. The average distance (d) is the shortest path length
between two nodes, averaged over every pair of nodes in the
network. Another metric eccentricity is an extreme form of
distance. Eccentricity of a node is the maximum distance from
the node to other nodes. Eccentricity €; of node ¢ is defined
as ¢, = max(d;;),Vj, where d;; is the distance between
nodes ¢ and j. Distance distribution is important for evaluating
the routing algorithms, whose performance parameters depend
mostly on the distance distribution [20].

Figure 14/ shows the distance distribution. The distance
distributions of all three snapshots are almost identical. The
majority (60%) of shortest paths are 4-hop paths. We also
observe in Table Il that the average distance slightly increases
during the three year period over which the network size
has more than tripled. This means that the Gnutella network
maintains the small-world property and is highly scalable.

Figure [15/ plots the average distance from k-degree nodes.
One important observation is that the average distance as
a function of the node degree shows an evidently sta-
ble power law with exponent 0.07 in the three year pe-
riod. Moreover, these plots increase in chronological order
(10/18/04<02/02/05<05/29/06) in the full range of node de-
grees. This result is expected because the size of the Gnutella
network keeps increasing.

Figure 16/ shows the eccentricity distribution. The largest
eccentricity of all graphs is 10 hops, while the smallest
eccentricity of the 05/29/06 graph is one hop shorter than that
of the other two graphs. More than half (53%) of the nodes
have eccentricity 7. An interesting observation in Table I is
that the 02/02/05 graph has the largest average eccentricity.

Figure |17 plots the average eccentricity from k-degree
nodes. For nodes in the flux state, the average eccentricity
decreases slightly as the node degree increases. For nodes
in the supersaturation state, the average eccentricity remains
nearly stable.

G. Betweenness

Betweenness is the most frequently used measure of central-
ity. Betweenness of a node i, b;, is defined as the total number
of shortest paths between pairs of nodes that pass through node
i. Betweenness is an indicator of who the most influential
nodes in the network are, the ones who control the flow
of traffic between most node pairs. The nodes with highest
betweenness also result in the largest increase in typical
distance between others when they are removed. Metrics such
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as router utilization [16] and link value [21] are directly related
to betweenness.

Figure (18| shows the CCDF of node betweenness. It follows
a power law distribution of exponent 2 with an exponential
cutoff in the tail. From Table I, we observe that the average
node betweenness increases considerably. This is not surpris-
ing because of the significant augmentation of the network
size over the three years.

As shown in Figure [19, the normalized average node
betweenness of k-degree nodes is nearly identical for the three
years and follows a growing power law function with exponent
-1.4. Higher node degree leads to greater path diversity and,
hence, aggrandizes node betweenness for these nodes.

One may think that the betweenness-betweenness correla-
tion [22] would also be worthy of investigation. A simple
and clear measurement is to compute the average betweenness
bnn of the neighbors of the nodes with a given betweenness
b. We plot normalized b,,/(n(n — 1)) as a function of
normalized node betweenness b/(n(n — 1)) in Figure 20. It
is interesting that the distribution of each snapshot graph is
confined to a triangle area with a descending hypotenuse and
an ascending base. There are some low betweenness nodes
with high betweenness neighborhood. It implies that the mean
influence of neighbors of a node is almost independent of the
influence of the centered node.

IV. CONCLUSIONS

In this paper, we examine the Gnutella top-level overlay
topology over roughly three years. In particular, we investigate
the effect of NAT boxes on graph analysis and study an array
of interesting graph properties of the Gnutella top-level overlay
topology. We illustrate the importance of the connection limit
in shaping the unstructured overlay topology. Due to the
limited space, we limit the explanation of the implications of
our findings and the potential underlying causes and explore
these issues as future work.
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