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Abstract— The increasing complexity of the Internet demands
continued improvements to measurement techniques and data
analysis methods to aid our understanding of network operation.
The availability of accurate measurement data is necessary in
many areas ranging from attack detection, novel pricing schemes,
buffer dimensioning and switch design to general network man-
agement. In this paper, we develop a theory for accurate and
unbiased Internet traffic measurement using the tools of Poisson
random sampling. We show how this approach helps in storing,
managing, and aggregating data from different sources with
independent clocks and sampling rates. We present results that
show that stochastic sampling maintains important information
about network measurements that would be lost when using
conventional uniform sampling.

I. INTRODUCTION

Accurate Internet traffic measurements are critical for under-
standing and effectively managing network operations. Traf-
fic data also is a vital source of information for planning,
billing, anomaly and intrusion detection, and developing new
network designs. Ever increasing data link rates to support
traffic demands make it virtually impossible to record and
store information on every packet that is transmitted. Instead,
the common current practice for traffic measurement is to
sample or aggregate information. For example, to estimate link
utilization, the size of all packets is added and averaged over a
fixed-length interval. Estimation over fixed intervals essentially
amounts to uniform sampling of the integrated traffic.

The inherent problem with this approach is that the observed
arrival process on a high data rate link inevitably contains
extremely high frequencies. It is well known that uniform
sampling of a stochastic process whose bandwidth exceeds
half the sample rate (i.e., the “Nyquist rate” of the sampling
process) introduces spectral folding known as aliasing. That is,
the sampled process is both missing the true high-frequency
components and containing false low-frequency components
due to aliasing. No practical measurement and storage system
can implement uniform sampling at frequencies that are high
enough to avoid this problem.

A close look at factors influencing packet arrival rate
reveals several that lead to high-frequency periodicity causing
aliasing in uniform sampling of observed traffic. These include
deterministic link transmission times, common speeds for
numerous switches and routers, packet lengths that are mostly
fixed due to long TCP flows, oscillations induced by TCP
feedback loops, etc. As we show with examples from real data,

these periodicities are manifested as spikes in the frequency
spectrum of the traffic process. The frequencies of these spikes
(and parameters of the corresponding process components)
provide exactly the information that is most valuable for under-
standing, modeling, planning and design, and it is exactly the
information that uniform sampling misses. Misleading spectral
information causes severe problems for the very purposes for
which we are attempting traffic measurement in the first place:
it impedes understanding of the traffic components and it
leads to erroneous statistics (mean, variance, and correlations)
used for network planning, design and operation. Given these
considerations, it is perhaps not too strong a statement to say
that the currently ubiquitous uniform sampling methods are
fundamentally unsuitable for measuring Internet traffic.

It has long been recognized that one way to overcome
aliasing in sampling is to sample at random intervals rather
than at uniform intervals. In particular, Poisson sampling (that
is, sampling with random intervals that are independent and
exponentially distributed with a given average rate) has the
property that the frequency domain error due to sampling ap-
pears as constant power noise rather than aliased components.
While this noise could potentially drown out flat parts of the
observed signal’s power spectrum, its constant-power nature
also allows spectral peaks (at any frequency) to be correctly
recognized in the sampled data (as long as the peak amplitudes
exceed the noise floor).

In this paper, we develop a stochastic sampling framework
for Internet traffic measurement. Starting from the theoretical
foundations of Poisson sampling and Internet traffic models,
we develop a modified sampling algorithm that is useful for
practical, networking-specific measurement applications. We
use recent advances in the theory of Poisson counter-driven
stochastic differential equations (PCDSDE) for network traffic
modeling to develop a technique for estimating important
network characterization parameters from the sampled data.
We illustrate the application of this measurement techniques
with results from real network traffic.

In the remainder of this paper, Section II discusses related
work. The theoretical foundations of stochastic sampling are
introduced and refined for the network measurement domain
in Section III. Section IV discusses practical implementation
issues and applications. Section V presents results to illustrate
the benefits of stochastic sampling over uniform sampling.
Section VI summarizes and concludes this paper.



II. RELATED WORK

A large number of commercial and open-source network
measurement tools use uniform sampling when obtaining and
reporting such measurement results. Examples are:

e SNMP Counts: The Simple Network Management Pro-
tocol (SNMP) [1] provides a mechanism to access infor-
mation on SNMP-enabled devices. Typically, information
is retrieved by periodic polling the SNMP agent, which
is equivalent to uniform sampling. Typical SNMP-based
monitoring applications poll information at intervals of
minutes.

e Cisco Netflow: Cisco Netflow is a tool that provides
information about the data flows (defined by the five-tuple
of source and destination IP addresses and port numbers
and the protocol type) that are observed on a router [2].
The default interval for reporting flow information is five
minutes. One Netflow feature is to consider only every
n*" packet (“Sampled Netflow” [3]), which is equivalent
to uniform subsampling within the sampling interval. An
improved version of Netflow uses adaptive sampling [4],
but the adaptation is relatively slow and subsampling is
still done uniformly.

o Active Probing: Many active measurement tools, for
example ping and traceroute in the simplest case,
use uniform intervals to sample round-trip time delays.
On a larger scale, for example in PlanetLab, several
measurement services (e.g., all pairwise pings or path
failure monitoring) use uniform sampling intervals.

The key observations from these existing systems are that
(1) some sampling intervals are extremely long (e.g., SNMP
and Netflow) and thus do not yield any information on any
interactions that have periods below the minute range and (2)
that practically all measurement applications use uniform sam-
pling. However, many applications that use measurement data
rely on accurate frequency information. For example, anomaly
detection has been approach from a signal processing point
of view [5]. For a comprehensive overview of measurement
applications and general sampling techniques see [6].

The key properties of Poisson sampling, which is the basis
for our work, were derived in the 1970s [7], [8], and are nicely
summarized in [9]. We adapt these concepts to network mea-
surement using Poisson counter-driven stochastic differential
equations (PCDSDE) models. PCDSDE have recently been
applied to a variety to modeling problems ranging from TCP
window size [10] to admission control policies [11]. Poisson
sampling is similar to packetized Bernoulli sampling, but only
when packet streams exhibit deterministic inter-interval times.
When packet streams are random — as is the case for real
traffic — they are different.

We focus on the frequency spectrum of network traffic in
the context of this work since it contains important information
on traffic characteristics. Li et al. have observed that frequency
characteristics of network traffic are preserved even when pss-
ing through finite-buffer systems [12]. However, these buffers
can act as low-pass filters and truncate the high-frequency

spectrum. With networks moving towards small buffer router
designs [13], more high-frequency information is preserved
and aliasing caused by uniform sampling becomes a growing
problem in network measurement.

ITII. POISSON SAMPLING FOR NETWORK MEASUREMENT

In order to put our approach to stochastic sampling into
context, we briefly review the theoretical foundations of ran-
dom sampling. It is important to note that even though our
work is based on Poisson sampling, it does not imply that
we assume a Poisson network traffic model (which has been
shown to have significant shortcomings [14]). The issue of
measurement, which is what we address, is independent of
the issue of traffic modeling.

A. Theoretical Foundations of Random Sampling

Suppose that a signal (deterministic or random) is sampled
uniformly at a rate of f, samples/sec. As derivations of the
sampling theorem [9], [15] show, the sampled signal cannot
represent frequencies greater than f,/2 Hz; instead, any com-
ponents in the original signal at frequencies greater than f/2
Hz are “folded over” to be seen as components at frequencies
less than f,/2 Hz. (This is the effect known as aliasing.)
Hence, statistics obtained from low-rate uniform samplings of
high-bandwidth signals could be completely unreliable: high-
frequency terms (that help to determine signal variance and
correlations) are missing from the sampled data while low-
frequency terms (that determine the mean and contribute to
the variance) are distorted by aliasing.

To reduce the impact of aliasing, nonuniform adaptive
sampling has been proposed [16], [17], where the sampling in-
terval is adjusted according to estimates of the “instantaneous
bandwidth” of the signal. The complexity of a bandwidth
estimator can be avoided when using a stochastic sampling
technique known as Poisson random sampling.

Poisson random sampling is a scheme for sampling with
random intervals that are independent and exponentially dis-
tributed with a given average rate A. In a sense, it can be
viewed as a stochastic approximation to uniform sampling
since it can be shown that Poisson samples over any finite
interval have a uniform distribution [7], [8]. In particular, using
the properties of Poisson point processes it is shown in [9] that
if a deterministic signal f(¢) has Fourier transform F'(w), an
unbiased estimate of F'(w) can be obtained in the form

P) = 1 3 J(t)e = 0

where t; is a Poisson point process with rate A. Furthermore,
the variance of P(w) (for any w) is equal to % where Ey
is the energy in f(t) (given by Ey = [ f2(t)dt). (Similar
results are obtained if instead of a deterministic signal we
are sampling a random process — the sampled signal’s power
spectrum is the true power spectrum plus a constant that
is proportional to the average power of the random process
divided by A [9], [18].)



These results have several key consequences for our ap-
plication to Internet traffic measurement. In particular, they
show that there is no aliasing with Poisson sampling — the
expected value of the spectrum obtained from Poisson samples
(no matter how low the rate) is equal to the true spectrum
at every frequency. The sampling error is seen as constant
power noise through the entire spectrum, with the noise power
inversely proportional to the sample rate. As pointed out in
[9], this latter fact implies that a satisfactory estimate of F'(w)

is obtained from Poisson samples if |F(w)| > % But
again, our results presented in Section V show the presence of
multiple periodic components in the Internet traffic spectrum
(we present a model in Section III to account for these
periodicities as resulting from clocks modulated by on-off
signals). These periodicities appear as high-amplitude spectral
peaks. So, as long as the peak amplitude is significantly larger

than % the corresponding component (at any frequency)
are detectable in the Poisson samples. This is the crucial
difference between our Poisson sampling scheme and current
uniform sampling schemes, and it is the key to extracting
useful network statistics from practical low-rate sampling.

B. Poisson Sampling for Network Measurement

Ideal Poisson sampling requires exponentially distributed
sample intervals, so that a given interval has a non-zero
probability of being either too short for any realistic sam-
pling mechanism or too long for sampling over any finite
interval. A variation on Poisson sampling called minimum
distance Poisson sampling was proposed in [18] to enforce
a minimum allowable distance between the sample points.
The ideal Poisson sampling process has a power spectrum
equal to a constant (the inverse of the rate) plus an impulse at
zero frequency. The power spectrum of the modified sampling
process is shown in [18] to have the form of a non-constant
function of frequency added to a zero-frequency impulse. The
non-constant power spectrum component increases the error in
recovering high-frequency components from the samples. In
addition to enforcing a non-zero lower bound on the distance
between sample points, for practical sampling of Internet
traffic we also need to impose a restriction on the maximum
distance between samples (thus creating a truncated Poisson
sampler).

A second practical consideration lies in averaging vs. sam-
pling. Even the fastest current sampling techniques actually
perform averaging over short intervals. The frequency domain
effect of this is to multiply the sampled spectrum by a broad
sinc envelope that diminishes high-frequency components.
We need to account for this effect in our analysis. Another
question is whether we should be just sampling (or short-
term averaging), or as is the case in most current systems,
counting the arrivals between sample times. The latter scheme
is equivalent to sampling the integrated traffic. Integration has
the effect of multiplying the original signal power spectrum
by a factor of 1/w?. This would reduce the constant power
noise in the spectrum of the Poisson sampled signal, at the

cost of diminished values for any high-frequency peaks.

Finally, in addition to recovering spectral peaks and the
corresponding signal component parameters, it is of interest
for some applications such as network forensics and post-
mortem analysis to reconstruct the actual traffic signal from
Poisson samples. One possibility would be simply to invert an
FFT of the sampled data, or that part of the FFT that exceeds
some threshold. A method that was shown in [19] to yield
better results involved polygonal interpolation of the Poisson
samples.

C. Traffic Modeling and Link Parameter Estimation

As we have noted above (and demonstrate with the real
traffic data example in Section V), periodic components (at
both low and high frequencies) predominate in Internet traffic.
We have discussed how these components may be missed
or erroneously identified from uniform traffic samples, with
negative consequences for our ability to derive the network
statistics needed for planning, design and pricing policy. We
have also shown that in contrast, the measurements gener-
ated by our Poisson sampling approach are ideally suited
for recovering periodic components in the traffic data. The
questions that needs to be addressed is how these periodic
components arise, how they relate to key link characteristic
parameters, and how the link parameters may be estimated
from the measurements.

We first note that the problem of identifying traffic char-
acteristics from sampled data has received significant recent
attention. For example, an algorithm for using counters to
identify the top k categories (e.g., destination IP addresses)
to which individual packets belong is presented in [20]. The
work that is perhaps closest in spirit to our approach is
described in [21]. That work, which attempts to recover the
packet-level power spectral density and the distribution of
the number of packets per flow, is based on flow sampling
(thinning) rather than packet sampling. The authors demon-
strate accurate estimation of the spectrum and flow statistics
even after significant thinning. However, this approach requires
that the observed traffic be modeled as the superposition of
independent and identically distributed packet flows, and it
requires a preprocessing step of classifying packets into flows
before sampling.

In contrast, our approach is based on a hierarchical model
for the observed packet stream on a link. This stream is a bi-
nary signal with relatively short and infrequent 1’s (indicating
packets) separated by strings of 0’s (indicating no packets).
To capture this characteristic, we assume that the fundamental
packet generation process is a Markov on-off process with
short on duration and long off duration. This process (say,
x(t)) is generated by a Poisson Counter Driven Stochastic
Differential Equation (PCDSDE) [22] of the form

do(t) = —z(t)dN1(t) + (1 — 2(t))dNa(t),  (2)

where Np(t) and No(t) are independent Poisson counters
having rates A\; and \s, respectively. (Note that the relative
sizes of the Poisson counter rates provide an indicator of



the “busy-ness” of the packet generation process.) Using the
independence property of Poisson counter jumps, it is not
difficult to show that the stationary process generated by
Equation 2 has mean 1, = (A1 +\2) ~! Ay and autocovariance
function Cy(7) = Cp(0)exp{—(A1 + A2)|7|}. Hence, the
power spectrum S, (w) of x(t) is low-pass with an impulse
at zero frequency of size 2 and a half-power frequency of
A1 + Ao rads/sec.

However, what we observe when we measure link traffic is
not x(t); rather (because of factors such as those mentioned
above), we see a process y(t) that amounts to a high-frequency
periodic signal s(¢) (which we call a clock) modulated by
x(t). That is, we obtain samples of y(¢) = x(t)s(t), which
(assuming independence of x(¢) and s(t)) implies that the
autocorrelation function of y(t) is the product of the autocor-
relations of x(¢) and s(t) and hence that the power spectrum
Sy(w) of the observed process is the convolution of Sy (w)
and S¢(w) (the clock power spectrum). The periodic nature of
the clock signal autocorrelation function implies that its power
spectrum consists of a series of impulses at the fundamental
clock frequency and its harmonics. Hence, S, (w) consists of
a series of shifted versions of S,(w) centered at harmonics
of the clock frequency. So, in the observed signal’s power
spectrum we see impulses (due to p,) and narrow pulses
(due to C(T)) centered at the clock frequency harmonics. We
believe that this basic PCDSDE-modulated clock model can
both explain the presence of the high-frequency spikes seen in
the traffic measurement spectrum and indicate how parameters
of those spectral peaks (frequencies and amplitudes) relate to
network characterization parameters such as clock frequencies
and Poisson counter rates. Since our Poisson sampling algo-
rithms can recover the power spectrum peaks, they provide us
with a new opportunity to extract these fundamental network
operation parameters from traffic measurements.

We can develop models that are extensions of the above
basic model. In particular, it has been argued recently [23]
that typical packet generation processes are more accurately
modeled by a product of Markov on-off processes; that is,
by x1(t)xa(t) - - - xn(t) where each x(t) is a Markov on-off
process of the type described above. (In fact, it has been shown
that such a model can account for the long-range dependency
seen in some Internet traffic data [24].) This product process
may in turn modulate several clocks having different frequen-
cies, so in general we observe the sum of modulated signals
y(t) = 21 (O)2a(t) - an (O)]s1(8) + s2(8) + -+ sp (D)} I
is possible to validate these models by comparing the results
in time and frequency domains to actual Internet traffic data
sets.

IV. PRACTICAL CONSIDERATIONS

To illustrate how the theoretical foundations of stochastic
sampling can be applied to practical network measurement
scenarios, we discuss three general problems that appear in
measurement: (1) how to merge multiple measurement data,
(2) how to maintain information with limited storage, and (3)
how to perform stochastic sampling online.

A. Merged Data Analysis

In many network measurement scenarios, data is collected
in a distributed fashion to obtain a broader view of the state
of the network than can be achieved with a single measure-
ment point [25]-[27]. Utilizing multiple measurement systems
raises a number of challenges that are related to the issue
of sampling: (1) Data collected from different measurement
nodes needs to be merged into a single coherent “view;” (2)
Synchronization between system needs to be considered to
ensure the results are consistent.

The merging process combines samples from multiple lo-
cations into a single set of samples. However, measurement
systems typically do not have a globally synchronized clock
with a level of accuracy better than millisecond range. NTP
(Network Time Protocol) is limited due to variation in the
end-to-end delay and GPS-based or CDMA-based devices
are limited due to the typical use of the serial interface
as communication port). When no synchronization can be
achieved among distributed measurements, it is difficult to
correlate information. A similar problem occurs when two
measurement systems sample at different rates (e.g., due to
different link rates).

In the case of stochastic sampling, this issue can be solved
elegantly in two steps:

o Change of sampling rate: Data from stochastic sampling
can be adapted to reflect any lower sampling rate by re-
moving random samples. Uniform sampling only allows
for downsampling by integer values (e.g., 1:2, 1:3, etc.),
but stochastic sampling can be adapted down to any rate
(for long sample traces) by randomly merging adjacent
intervals.

o Superposition of samples: Two traces obtained from
stochastic sampling (and typically adapted to be sampled
at the same rate) can simply be merged to reflect a
superposition of the information. The resulting trace is
a stochastically sampled trace with a sampling rate equal
to the sum of the rates of each trace.

To merge two traces, they both need to be adapted to the same
sampling rate and then superimposed. Repeated merging of
sampling data with different traces is possible.

B. Aging of Samples

The elegant property of being able to adjust the sampling
rate of stochastically sampled trace is also useful when con-
sidering long-term storage. For reasons of Internet forensics,
post-mortem analysis, etc., it is often desirable to store mea-
surement information for days, months, and even years. With
link speeds in the Gigabit per second range, it is practically
impossible to store high-resolution measurement data for a
long time. Instead, stochastic sampling can be applied to the
data and the sampling rate can be adapted for data of different
age. The sampling rate can be continuously varied from high
(for recent data) to low (for oldest data) while keeping the
total storage requirement constant.
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representation of the original signal albeit with a slightly higher noise floor than the FFT.

C. Online Algorithms for Sampling

As is described in Section III, Poisson samples can generate
an unbiased estimate of the complete signal spectrum through
Equation 1. In practice, the Fourier Transforms would be
calculated with FFTs (as in the results shown in Section V).
There is a complication for doing this that is implied by
Equation 1: even if we have only a very sparsely sampled
subset of the original data, computation of an FFT-based
spectrum estimate from Poisson samples requires the FFT
length to be that of the original data, not the sampled data. (In
other words, we have to zero-pad between the Poisson samples
before we can take an FFT.) For very long data records
obtained by measuring high-speed links over any significant
time period, the resulting FFTs may be too computationally
demanding for online algorithms. Alternate means of spectrum
estimation from Poisson samples have been developed for
uniformly sampled harmonic and pole-zero signal models [28],
[29].

V. RESULTS

In this section, we present results that compare the infor-
mation that can be extracted from uniformly sampled and
stochastically sampled measurement data. We have performed
several experiments to demonstrate the differences between
these approaches.

The measurement data consists simply of packet arrival
times (as it has been used for anomaly detection [5]). The
arrival time traces were collected from the Internet access link
at the University of Massachusetts Amherst, which is a 1 Gbps
link that is paced to 350 Mbps. Data was collected with Endace
DAG4.3E network measurement card [30], which provides
packet traces with timestamps with a relative accuracy of tens
of nanoseconds.

A. Uniform vs. Stochastic Sampling

In the first experiment, we collected data over a period of ap-
proximately 100 hours. Packet counts were taken for the uplink
at 1-second intervals and are shown in Figure 1(a) (to obtain
a clear frequency spectrum, the packet counts are shifted to a
zero average). This figure clearly shows the diurnal cycles in

the traffic patterns (and two spikes due to artifacts in the data
collection process). The complete power spectrum of the signal
is shown in Figure 1(b), which is obtained by performing a
Fast Fourier Transform (FFT) over the packet counts. When
applying sampling to the packet count process, Figure 1(c)
(uniform sampling) and Figure 1(d) (stochastic sampling) are
obtained. In both cases, the signal is downsampled 1:1000.
Clearly, Figure 1(c) shows a highly accurate representation of
the low frequency components of the packet counts. However,
due to uniform sampling, frequency components above the
Nyquist frequency (0.5x 1073 Hz in this example) are cut off
entirely. In comparison, stochastic sampling in Figure 1(d)
shows that information over the entire frequency range is
available. While the noise floor is somewhat increased over
the original signal, there is still an accurate representation of
low frequency components as in the uniform sampling case.

In the second experiment, we represented packet arrivals
as a point process with a very high resolution of 50 ns. The
goal is to illustrate the effect of aliasing in uniform sampling.
The FFT of a 0.75 s long interval is shown in Figure 2(a).
The uniform sampled version of the power spectrum is shown
in Figure 2(b). Clearly, several of the high-frequency spikes
above the Nyquist frequency have been folded into the low-
frequency range. This aliasing leads to an erroneous interpre-
tation of the measured data. In the stochastic sampling case
shown in Figure 2(c), on the other hand, no such aliasing
occurs despite sampling.

VI. SUMMARY AND CONCLUSIONS

We believe that stochastic sampling is an important step to-
wards more accurate network measurements. As shown, com-
monly used uniform sampling misses high-frequency signal
components and causes aliasing in low-frequency components.
Poisson random sampling avoids these problems and simplifies
distributed measurement due to its inherent asynchrony. We
have discussed how stochastic sampling can be practically
implemented in the context of network measurement. Our
results show that stochastic sampling retains wide spectral
information, creates no aliasing, and thus avoids the common
problems of today’s widely used uniform sampling.
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