MetaCAPTCHA: A Metamorphic Throttling Service for the Web

Akshay Dua, Thai Bui, Tien Le, Nhan Huynh, Wu-chang Feng
{akshay, buithai, letien, nhhuyng, wuchang}@cs.pdx.edu

Portland State University

October 21, 2014
1 Introduction

The problem
Current Prevention Methods
Our Approach

2 System Architecture

System Overview
Variable Cost Function
Puzzles

3 Evaluations

Experimental Setup
Defense-in-Depth
Conclusions
Traditional email spam
The market is moving to social Spam
Difficult to detect kind of spam
As a result

Email spam is reducing but social spam is edging up, with
As a result

Email spam is reducing but social spam is edging up, with

Large volume Four million Facebook users receive spam each day in 2011 [5, 9]
As a result

Email spam is *reducing* but social spam is *edging up*, with

Large volume Four million Facebook users receive spam each day in 2011 [5, 9]

Fast growth Cost businesses $20.5 billion annually and projected to $198 billion in the next four years [12]
As a result

Email spam is *reducing* but social spam is *edging up*, with

Large volume Four million Facebook users receive spam each day in 2011 [5, 9]

Fast growth Cost businesses $20.5 billion annually and projected to $198 billion in the next four years [12]

High conversion rate The “clickthrough” rate of spam URLs on Twitter was almost two times higher than email spam in 2010 [6]
Two main methods

\textit{CAPTCHAs} \quad \textit{proof-of-work}
CAPTCHAs

- can prevent bots effectively..

Akshay Dua, Thai Bui, Tien Le, Nhan Huynh, Wu-chang Feng
CAPTCHA As

- can prevent bots effectively .. as long as there aren't OCR algorithms that can solve it [13]
CAPTCHAs

- can prevent bots effectively as long as there aren't OCR algorithms that can solve it [13]
- no way to have variable cost of solving [10, 11]
CAPTCHAs

- can prevent bots effectively as long as there aren’t OCR algorithms that can solve it [13]
- no way to have variable cost of solving [10, 11]
- can only use for infrequent transactions due to the usability burden [14]
CAPTCHAs

- can prevent bots effectively as long as there aren't OCR algorithms that can solve it [13]
- no way to have variable cost of solving [10, 11]
- can only use for infrequent transactions due to the usability burden [14]

= annoying
Introduction

System Architecture

Evaluations

References

The problem

Current Prevention Methods

Our Approach

Proof-of-work

• does not have CAPTCHA’s usability issues
• can be used in frequent transactions
• thus, can have variable cost of solving

but

• many proposed systems do not have an accurate user reputation
• or, are too tightly integrated with a given application [3]

= boo :(

Akshay Dua, Thai Bui, Tien Le, Nhan Huynh, Wu-chang Feng

MetaCAPTCHA: A Metamorphic Throttling Service
Proof-of-work

- does not have CAPTCHA’s usability issues
Proof-of-work

- does not have CAPTCHA’s usability issues
- can be used in frequent transactions
Proof-of-work

- does not have CAPTCHA’s usability issues
- can be used in frequent transactions
- thus, can have variable cost of solving
Proof-of-work

- does not have CAPTCHA’s usability issues
- can be used in frequent transactions
- thus, can have variable cost of solving

= nice right?
Proof-of-work

- does not have CAPTCHA’s usability issues
- can be used in frequent transactions
- thus, can have variable cost of solving
 = nice right? but

- many proposed systems do not have an accurate user reputation
Proof-of-work

- does not have CAPTCHA’s usability issues
- can be used in frequent transactions
- thus, can have variable cost of solving

= nice right? but

- many proposed systems do not have an accurate user reputation
- or, are too tightly integrated with a given application [3]
Proof-of-work

- does not have CAPTCHA’s usability issues
- can be used in frequent transactions
- thus, can have variable cost of solving

= nice right? but

- many proposed systems do not have an accurate user reputation
- or, are too tightly integrated with a given application [3]

= boo :(
"License" and "tax" spam

Combines the strength of CAPTCHA and proof-of-work as puzzles
"License" and "tax" spam

Combines the strength of CAPTCHA and proof-of-work as puzzles

Variable Cost Function The more you spam the "harder" puzzles you have to solve. Uses a Bayesian reputation system
“License” and “tax” spam

Combines the strength of CAPTCHA and proof-of-work as puzzles

Variable Cost Function The more you spam the “harder“ puzzles you have to solve. Uses a Bayesian reputation system

Secure The solver code is metamorphic: changing code randomly in each transaction
"License" and "tax" spam

Combines the strength of CAPTCHA and proof-of-work as puzzles

Variable Cost Function The more you spam the "harder" puzzles you have to solve. Uses a Bayesian reputation system

Secure The solver code is metamorphic: changing code randomly in each transaction

Easy to use Easy to install & manage allowing the addition or removal of "ineffective" puzzles
Communication Protocol

Authentication = Kerberos model

Figure 1: MetaCAPTCHA puzzle delivery and solution verification
Using Bayesian model

Training Data
Using Bayesian model

Training Data
→ Naive Bayes classifier
Using Bayesian model

Training Data
→ Naive Bayes classifier
→ Reputation score \(r \) between 0 and 1
Using Bayesian model

Training Data
→ Naive Bayes classifier
→ Reputation score r between 0 and 1
→ Puzzle difficult t
Using Bayesian model

Training Data
→ Naive Bayes classifier
→ Reputation score \(r \) between 0 and 1
→ Puzzle difficult \(t \)
→ Random generated puzzles
Using Bayesian model

Training Data
→ Naive Bayes classifier
→ Reputation score r between 0 and 1
→ Puzzle difficult t
→ Random generated puzzles

Client solves the puzzles until reaches the total amount of time t
Non-interactive, interactive or both

Web apps determine what puzzle types to protect their websites
Non-interactive, interactive or both

Web apps determine what puzzle types to protect their websites

Puzzle types

- Non-interactive puzzles
 - Targeted Hash-Reversal [4]
 - Modified Time-Lock [3]
Non-interactive, interactive or both

Web apps determine what puzzle types to protect their websites

Puzzle types

- Non-interactive puzzles
 - Targeted Hash-Reversal [4]
 - Modified Time-Lock [3]

- Interactive puzzles
 - reCAPTCHA
Non-interactive, interactive or both

Web apps determine what puzzle types to protect their websites

Puzzle types

- Non-interactive puzzles
 - Targeted Hash-Reversal [4]
 - Modified Time-Lock [3]

- Interactive puzzles
 - reCAPTCHA

- Hybrid
 - CAPTCHA+: reCAPTCHA and Modified Time-Lock

More puzzle types can be added/removed with no changes to the web application
Environment & Dataset

- Deployed MetaCAPTCHA on a live discussion forum active for about two months in 2012
- Had ≈ 2000 messages, ≈ 500 users, ≈ 100 sub-forums with ≈ 1000 threads
F-measure of different features

10-fold cross-validation to train on ≈ 1500 messages and test the classifier on multiple features

Figure 2: Using multiple features is better than using one or a few
Figure 3: CDF solving time of spammers, non-spammers and mixed users

- ≈ 90% of spammers solved a puzzle over 6 hrs long
- ≈ 95% of non-spammers solved no puzzles at all and ≈ 5% spent between 7.2 secs to 8.4 minutes
Mixed users posted more ham than spam

![Bar chart showing distribution of spam and ham sent by mixed users.](image)

Figure 4: Distribution of spam and ham sent by mixed users. Mixed users sent very little spam (between 1 and 8) when compared to the total messages they posted. X-axis indicates User ID.
MetaCAPTCHA can really hurt spammers

- Slow down 90% of "spammers" significantly so they don’t spam others
- No impact on 95% of honest users
MetaCAPTCHA can really hurt spammers

- Slow down 90% of "spammers" significantly so they don’t spam others
- No impact on 95% of honest users
- Some improvement on those "unlucky users" who blamed their computers were too slow
MetaCAPTCHA can really hurt spammers

- Slow down 90% of "spammers" significantly so they don’t spam others
- No impact on 95% of honest users
- Some improvement on those "unlucky users" who blamed their computers were too slow

Future Works

- Using spammer’s computing resources for volunteer computing (e.g. SETI@Home)
- Bitcoin as proof-of-work; turning spammers into miners
Acknowledgment

This work as supported by the National Science Foundation under Grant Number CNS-1017034

Question?
References I

Figure 5: User’s browser must show proof-of-work before the web application accepts the user’s message. The dotted line indicates initial setup performed by the web application to use the MetaCAPTCHA service.
Using Bayesian model

MetaCAPTCHA calculates a *reputation score* r between 0 and 1
- probability that a given message is spam as determined by a Naive Bayes classifier

The *reputation score* r is translated to the *puzzle difficulty* t which is the amount of time a client must be kept busy solving puzzles 1

$$t = (t_{max} + 1)^r - 1, \quad t_{max} = \frac{t_p}{s_p(1 - \delta)}$$

where, δ is the reduction in spam the web application is seeking (e.g. 10%) from an average amount s_p of spam messages received in time period t_p

1inspired by Laurie and Clayton’s work on proof-of-work [8]
Solving Puzzles

Puzzles are randomly generated based on the list that is configured

- Must be solved by the user’s browsers or the users
- If the solution is returned in time $t' < t$, then a new puzzle is chosen and issued
- This process is repeated until the client has computed for at least t amount of time

The idea behind issuing several puzzles is to ensure that no user can complete an online transaction unless they have computed for a length of time $\geq t$
Puzzles = CAPTCHAs + Proof-of-work

Proof-of-work

- First proposed by Dwork and Naor [2] to combat email spam
- Non-interactive
- Difficult to solve in terms of time & complexity, but easy to verify answers

A famous example is Hashcash [1] - a computational challenge where the computer has to find a k-bit partial hash collision on string x, given a hash function H and string y, such that the first k bits of $H(x)$ and $H(y)$ are equal
More experimental setup

- forum users divided into three categories, (i) *spammers*: (ii) *non-spammers*, and (ii) *mixed*: those who sent both spam and ham

- Here, 'users' implies the senders of messages included in ground-truth information provided by the forum.

- After the categorization, there were 99 messages sent by non-spammers, 240 messages sent by spammers, and 151 messages sent by mixed users in the test set (34% of ground-truth data picked uniformly at random).
Puzzle difficulty parameters

- \(t_{\text{max}} = 6.82 \text{ hrs based on time period } t_p = 1 \text{ month} \)
- number of spam messages \(s_p \) seen in that month is 1442, and a spam reduction factor \(\delta = 0.6 \)
- \(\approx 90\% \) of spammers solved a puzzle over 6 hrs long
- \(\approx 5\% \) of non-spammers solved a puzzle between 7.2 secs and 8.4 minutes long
- \(\approx 95\% \) of non-spammers solved no puzzles at all.
Solving time of spammers, non-spammers and mixed users

Figure 6: CDF of reputation scores assigned to spammers, non-spammers, and mixed users (those that sent at least 1 spam and 1 ham)
Reputation Score Evaluations

• \(\approx 90\% \) of spammers have reputation scores over 0.95. \(\approx 99\% \) of non-spammers got a reputation of 0.065 or less.

• Only one honest user suffered the ill fate of being assigned a reputation of 0.88, whereas 94\% were assigned a reputation of zero — implying that they did not solve a puzzle at all!
Majority of mixed users posted more ham than spam

Figure 7: Distribution of spam and ham sent by mixed users. Mixed users sent very little spam (between 1 and 8) when compared to the total messages they posted. X-axis indicates User ID.