

Centre for Secure Information Technologies (CSIT)

Est.2009, Based in The ECIT Institute

Initial funding over £30M

- 80 People
- Researchers
- Engineers
- Business Development

Largest UK University lab for cyber security technology research

GCHQ Academic Centre of Excellence

Industry Informed

Open Innovation Model

Strong international links

- ETRI, CyLab, GTRI, SRI International
- Cyber Security Technology Summit

SDN Research

and Security

0101 00101 1110110111110 01010000010101010 10

	SDN Layer Affected or Targeted				
Security Issue/Attack	Application	App-Ctl	Control	Ctl-Data	Data
	Layer	Interface	Layer	Interface	Layer
Unauthorized Access e.g.					
Unauthorized Controller Access			✓	✓	✓
Unauthenticated Application	~	√	\checkmark		
Data Leakage e.g.					
Flow Rule Discovery (Side Channel Attack on Input Buffer)					✓
Forwarding Policy Discovery (Packet Processing Timing Analysis)					√
Data Modification e.g.					
Flow Rule Modification to Modify Packets			✓	✓	✓
Malicious Applications e.g.					
Fraudulent Rule Insertion	√	✓	✓		
Controller Hijacking			✓	√	✓
Denial of Service e.g.					
Controller-Switch Communication Flood			✓	√	✓
Switch Flow Table Flooding					√
Configuration Issues e.g.					
Lack of TLS (or other Authentication Technique) Adoption			✓	√	√
Policy Enforcement	\checkmark	\checkmark	~		

Sezer, S., et al. "Are We Ready for SDN? Implementation Challenges for Software-Defined Networks" *IEEE Communications Magazine*, July 2013 Scott-Hayward, S., O'Callaghan, G. and Sezer, S. "SDN Security: A Survey" *IEEE SDN4FNS*, November 2013

Fundamental security challenge is the ability for a malicious application to access network state information and manipulate network traffic for nefarious purposes.

Northbound Interface (NBI) Communication involves:

- Reading Network State
- Writing Network Policies

Objective:

Protect against unauthorized control function access attempts

Floodlight Architecture

Problem Description

Weaknesses in current approach:

- No authentication of RESTful API commands
- No scheme to ensure rules installed do not overlap or interfere with one another
 - Applications do not have to provide identity information
 - No application regulation or behaviour inspection after installation
 Potential Solutions:
 - Rule conflict detection and correction
 - Application identification and priority enforcement
 - Malicious activity detection and mitigation

System Design

System Attributes:

- 1. Define a complete set of permissions
- 2. Provide a secure storage structure for saving unique application IDs mapped to the set of permissions granted to that application
- 3. Provide a means for the network administrator/operator to add/remove application permissions (by its unique ID)
- 4. Provide a REST call for applications to query the controller and discover their assigned permissions
- 5. Secure the methods, in the Floodlight controller, that carry out the functions described by each of the permissions in the permission set
- Log all unauthorized operation attempts to a log file for auditing purposes

Permissions Categorization

	Category	Permission	Screening method(s)		
	Read	read_topology	getAllSwitchMap: Controller.java getLinks: LinkDiscoverManager.java		
		read_all_flow	getFlows: StaticFlowEntryPusher.java		
		read_statistics	getSwitchStatistics: SwitchResourceBase.java getCounterValue: SimpleCounter.java		
		read_pkt_in_payload	get: FloodlightContextStore.java		
		read_controller_info	retrieve: ControllerMemoryResource.java		
010101010101010 0010101010101010 01010000101010	Notification	pkt_in_event			
		flow_removed_event	addToMessageListeners: Controller.java addListener: ListenerDispatcher.java		
		error_event		- -	
1010 - 1011(Write	flow_mod_route	insertRow: AbstractStorageSource.java		
		flow_mod_drop	deleteRow: AbstractStorageSource.java		
		set_flow_priority	insertRow: AbstractStorageSource.java		
		set_device_config	setAttribute: OFSwitchBase.java		
		send_pkt_out	write: IOFSwitch.java writeThrottled: IOFSwitch.java		
		flow_mod_modify_hdr	parseActionsString: StaticFlowEntries.java		
		modify_all_flows	setCommand: OFFlowMod.java		

Application Permissions

Application Permissions Management:

Unique ID is key to access LinkedHashMap structure storing application permissions

(encrypted and serialized)

Application Permissions Interrogation:

ckane@ckane-VirtualBox:~/floodlight\$ java -cp target/floodlight.jar security.PermissionsCLI -help

User requires help using PermissionsCLI

usage: permissionsCLI

-help	Display help information
-id <arg></arg>	Application ID
-permissions <arg></arg>	List of permissions
-set	Set application permissions
-unset	Unset application permissions

Valid Permissions: read_topology, read_all_flow, read_statistics, read_pkt_in_payload, read_controller_info, pkt_in_event, flow_removed_event, error_event, topology_event, flow_mod_route, flow_mod_drop, flow_mod_modify _hdr, modify_all_flows, send_pkt_out, set_device_config, set_flow_priority, "ALL" (grants all permissions to application)

Set Example: permissionCLI -set -id <application-id> -permissions <list of permissions> Unset Example: permissionCLI -unset -id <application-id>

Application Permissions Querying: REST URI: /wm/security/<id>/permissions/json

Operation Checkpoint

Operation Checkpoint:

Floodlight Method getAllSwitchMap has been modified to incorporate the new security mechanism

public Map<Long,IOFSwitch> getAllSwitchMap(String appId) { 13910 Map<Long, IOFSwitch> switches = 1392 new HashMap<Long, IOFSwitch>(this.syncedSwitches); 1393 1394 OperationCheckpoint opChkpt = new OperationCheckpoint(); if (opChkpt.isOperationPermitted("read topology", appId)) { 1395 if (this.role != Role.SLAVE) { 1396 switches.putAll(this.activeSwitches); 1397 1398 1399 } 1400 return switches; 1401 **Unauthorized Operations Log:** <date><time><applicationID><deniedpermission>

CircuitPusher Example (1/5)

CircuitPusher ... "utilizes Floodlight rest APIs to create a bidirectional circuit, i.e. permanent flow entry, on all switches in route between two devices based on IP addresses with specified priority"

With no permissions granted to *circuitpusher*, the attempt to add a bidirectional circuit fails in an attempt to retrieve switch details:

admin2@sdn02:~/floodlight\$./apps/circuitpusher/circuitpusher.py --controller=10.80.80.12:8080 --type ip --src 10.80.8 1.45 --dst 10.80.81.55 --add --name testCircuit Namespace(action='add', circuitName='testCircuit', controllerRestIp='10.80.80.12:8080', dstAddress='10.80.81.55', srcA ddress='10.80.81.45', type='ip') curl -s http://10.80.80.12:8080/wm/device/circuitpusher/?ipv4=10.80.81.45

Traceback (most recent call last):
 File "./apps/circuitpusher/circuitpusher.py"
 sourceSwitch = parsedResult[0]['attachmentPoint'][0]['switchDPID']
IndexError: list index out of range

01010		

After the *read_topology* permission is added, the initial commands of the application complete successfully:

admin2@sdn02:~/floodlight\$ java -cp target/floodlight.jar security.PermissionsCLI -set -id circuitpusher -permissions read_topology

Application ID: circuitpusher Operation: Set Permissions: read topology

admin2@sdn02:~/floodlight\$./apps/circuitpusher/circuitpusher.py --controller=10.80.80.12:8080 --type ip --src 10.80.8 1.45 --dst 10.80.81.55 --add --name testCircuit Namespace(action='add', circuitName='testCircuit', controllerRestIp='10.80.80.12:8080', dstAddress='10.80.81.55', srcA ddress='10.80.81.45', type='ip') curl -s http://10.80.80.12:8080/wm/device/circuitpusher/?ipv4=10.80.81.45

curl -s http://10.80.80.12:8080/wm/device/circuitpusher/?ipv4=10.80.81.55

CircuitPusher Example (4/5)

Once the remaining permissions are added (*flow_mod_route* and *set_flow_priority*), the circuit is installed correctly with flow rules installed at the switches:

admin2@sdn02:~/floodlight\$ sudo ovs-ofctl dump-flows br2
NXST_FLOW reply (xid=0x4):
 cookie=0xa000000000000, duration=28.544s, table=0, n_packets=0, n_bytes=0, ip,in_port=3,nw_src=10.80.81.55,nw_dst=10
 .80.81.45 actions=output:1
 cookie=0xa000000000000, duration=28.589s, table=0, n_packets=0, n_bytes=0, ip,in_port=1,nw_src=10.80.81.45,nw_dst=10
 .80.81.55 actions=output:3
 cookie=0xa000000000000, duration=28.567s, table=0, n_packets=0, n_bytes=0, arp,in_port=1 actions=output:3
 cookie=0xa00000000000, duration=28.567s, table=0, n_packets=0, n_bytes=0, arp,in_port=1 actions=output:3
 admin2@sdn02:~/floodlight\$

inc.y		
10111011001 000010111011 000001011011 10110101010	000101010101010101000001011 010111 11001001010101 1101010101000010111 101010000010111 10101010	10 0 1 0 0 0 01 1 10 0 1 0000 01 01 10 1 0010 10 10 10 1 10 10 10 10 1 10 0 10 10 10 10 10 10 10 10 10 10 10 10 0010110110100 0 001011010 10 10 0101010101010000101 1 10 001 10 01010101010101010001010 1 001 10 001 110 00 000 10 10

CircuitPusher Example (5/5)

The log file holds the record of the unauthorized *circuitpusher* access attempts:

Performance

OperationCheckpoint introduces limited latency to the Floodlight Controller:

001010 101 000010111 100100010101010101		00101 1110110111110 11 0101000010101010 1 1110101010	
		Avg.	Std. Dev.
Execution Time (µs) without Op	perationCheckpoint	5.625	2.955
Execution Time (µs) with Operation	ationCheckpoint	372.750	103.191
Latency (µs)		367.125	102.437
1010101010 00 0 000101 10 1 1001 1010 10 01 1011001 0101 10 10 1011011011 000010111011 000010110101010	0100000010101101010100001 101010 1000010101010101010000001 10101001 0101010101000000001 1100100010 010111010000010111011001 001010 00010101010101010100000010111 010111 1100100001010100 0011010000010101 10010000010111 10010000010111 10010000001111 10010000011101 1001000001 100 0100010010101 10 0100100001 1101 0100100001 1101 0100101010 000 1000101011 101 010010101 100 010000001 101 0000000000		

Related Work

	platform for openflow ap	, C. Shi, and Y. Wang, "Towa oplications," in <i>Proceedings</i> <i>n Hot topics in SDN</i> . ACM, 2	of the second ACM
FortNOX	enforcement kernel for	egneswaran, M. Fong, M. Ty OpenFlow networks," in <i>Pro</i> .CM, 2012, pp. 121–126.	vson, and G. Gu, "A security acceedings of the 1st workshop
SE-Floodlight	"Security-Enhanced Flo	odlight." [Online]. Available:	1drv.ms/1k2WDTC
ROSEMARY	and B. B. Kang, "Rosen	20th ACM Conference on Co	s, V. Yegneswaran, J. Noh, I High-Performance Network Inter and Communications
	101011010101000010 1000001000010101 10101010	111011001000 0010101010 0100010101101 10 010101000001 1101 01010101	110 010 10 11 0 110010 10 10101010100 001011101110100 01011010100100101 100100010

the network

Conclusion

Problem:

Solution:

Malicious/Unauthorized SDN Applications pose a security threat to

Protect against unauthorized control function access attempts i.e. contain the application functionality

Future Work:

Malicious activity detection and mitigation (using log file results)

Abstraction to support alternative southbound protocols

CSIT: A Global Cyber Innovation Hub

